HP Researchers Disclose New Advances in Memristor Technology

By

Labeled as the fourth passive element, memristor or memory resistor, is seen as a promising future memory technology to compete against the entrenched Flash and traditional DRAM memory technologies. However, progress has been slow due to lack of understanding of the physical processes occurring at the nanoscale structures.

A joint paper by researchers from Hewlett-Packard Labs and the University of California in Santa Barbara, published in Nanotechnology journal, discloses new advances and better understanding of the miniscule structures of memristor. Thus, bringing it closer to reality, according to the researchers.  

Combining X-ray scanning technology with advanced modeling and simulation, researchers have been able to better correlate memristor’s electrical characteristics with local atomic structure, chemistry and temperature. As a result, the researchers have been able to understand how heat builds up at the nanoscale level as current passes through this structure. In reality, the scientists discovered that the current in the device flows in a 100-nm channel within the device. And the passage of this current creates heat that changes the titanium dioxide structure, which is surrounding the conducting channel, from a conducting to a non-conducting state.

Speaking to BBC News’ science & technology reporter Jason Palmer, HP Labs lead scientist and memristor discoverer Stanley Williams said that with understanding of the nm-scale structures of memristor and knowing precisely where heat is deposited will help to further advance future engineering efforts. He compared his work to that of Thomas Edison, who took over 1,000 attempts before arriving at a working light bulb, wrote Palmer.

"Without this key information about memristors, we are in Edison mode, where we just guess and modify the device at random," Williams told Palmer.

In commenting on the new advances in memristor technology, Williams added, "With the information that we gained from the present study, we now know that we can design memristors that can be used for multi-level storage - that is, instead of just storing one bit in one device, we may be able to store as many as four bits."


Ashok Bindra is a veteran writer and editor with more than 25 years of editorial experience covering RF/wireless technologies, semiconductors and power electronics. To read more of his articles, please visit his columnist page.

Edited by Rich Steeves
Get stories like this delivered straight to your inbox. [Free eNews Subscription]

TechZone360 Contributor

SHARE THIS ARTICLE
Related Articles

ChatGPT Isn't Really AI: Here's Why

By: Contributing Writer    4/17/2024

ChatGPT is the biggest talking point in the world of AI, but is it actually artificial intelligence? Click here to find out the truth behind ChatGPT.

Read More

Revolutionizing Home Energy Management: The Partnership of Hub Controls and Four Square/TRE

By: Reece Loftus    4/16/2024

Through a recently announced partnership with manufacturer Four Square/TRE, Hub Controls is set to redefine the landscape of home energy management in…

Read More

4 Benefits of Time Tracking Software for Small Businesses

By: Contributing Writer    4/16/2024

Time tracking is invaluable for every business's success. It ensures teams and time are well managed. While you can do manual time tracking, it's time…

Read More

How the Terraform Registry Helps DevOps Teams Increase Efficiency

By: Contributing Writer    4/16/2024

A key component to HashiCorp's Terraform infrastructure-as-code (IaC) ecosystem, the Terraform Registry made it to the news in late 2023 when changes …

Read More

Nightmares, No More: New CanineAlert Device for Service Dogs Helps Reduce PTSD for Owners, Particularly Veterans

By: Alex Passett    4/11/2024

Canine Companions, a nonprofit organization that transforms the lives of veterans (and others) suffering PTSD with vigilant service dogs, has debuted …

Read More